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Abstract

In computational catalysis, machine learning potentials (MLPs)

have become increasingly important and disruptive because they

offer a way to advance the promise of quantummechanics to solve

problems of catalysis with high accuracy at very low cost in terms

of computation time. The review explores the current trends of the

MLP architectures, training, and their implementations in

modeling catalytic reactions.We talk about the conceptual tenets of

ML-based force fields, how it can be used in any catalytic system,

and the obstacles on the way to data efficiency, transferability, and

uncertainty quantification. Precious applications such as single-

atom catalyst, transition metal complex and high-throughput

screening utilize a case study in recent times. MLPs combined with

quantum mechanical calculations, automated reaction elucidation

and foundation model technologies are areas of potential

improvements in catalytic reaction knowledge.

Keywords: machine learning potentials, catalysis, force fields,

neural networks, quantum mechanics, molecular dynamics,

reactionpathways

1 Introduction

Catalytic processes are the backbone of the modern

chemical industry and energy conversion processes,

and more than 85 percent of industrial chemical

reactions depend on a catalyst to accelerate the

reaction, make it selective and allow economically

viable reaction conditions to be achieved under mild

conditions (Chen et al., 2024). Catalytic

fundamentals necessitate a thorough picture of the

possible energy landforms (PES), reaction

courseways, and the dynamic actions of reactants,
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intermediaries, and products in their association with

the outdoor surfaces, or the coordination

frameworks (Wang et al., 2023). Such knowledge is

important in the rational catalyst design, in

optimization the reaction condition, development of

green chemical process able to solve global

challenges, such as energy storage, environmental

remediation, and chemical manufacturing.

Classical methods of catalytic modeling have been

based largely on the density functional theory (DFT)

of the structure of calculations, which provides an

account based on quantum mechanics by

approximating the electronic Schrodinger equation

in the established approximations. Although DFT

has played a major role in enhancing our

comprehension of catalytic processes, it has serious

essential drawbacks to its applicability since it is

constrained to comparatively little systems with

hundreds of atoms and simulation periods measured

in picoseconds transmission (Deringer et al., 2024).

Such limitations are especially daunting when

applied to catalytic systems, which frequently have

complex multi-component environments consisting

of solvents, supports, promoters and extended

interfaces that together modify the catalytic

performance via complex cooperative effects that

occur over a spectrum of length scales.

The other extreme of the computational spectrum is

use of classical force fields that provide

computational efficiency that is exceptional and is

able to model large systems over long periods of

time. Nevertheless, such empirical potentials remain

insufficiently advanced when it comes to explaining

complex electronic rearrangement that take place

during the process of catalytic bond breaking and

bond formation (Zhang et al., 2023). The catalytic

systems are reactive thus necessitating the precise

portrayal of transition states, charge transfer

processes, polarization processes and the dynamical

interaction of the molecules of catalyst and substrate

which can only be accomplished quantum

mechanically and therefore beyond the capabilities

of classical force fields. This weakness has posed a

serious shortcoming in our capacity to be capable of

building realistic catalytic conditions in an adequacy

and performance-demanding trials of calculus.

The development of the potentials of machine

learning (MLPs) within the last decade has provided

a landmark approach to fill this accuracy-efficiency

gap in computational catalysis that has existed

(Behler, 2024). MLPs work on the idea to learn

complicated mappings between the atomic positions

and potential energy and forces by using advanced

regression training techniques against excellent

quality quantum mechanical data. These models can

be trained on old configurations, and then when it

takes various energies, forces, or other properties of

new formed structures, they are predicted with

several orders of magnitude acceleration over ab

initio-based methods at near-quantum mechanical

accuracy (Musaelian et al., 2023). This paradigm

shift has provided unprecedented access to the

investigation of catalytic reactions at various length

and time scales so that now phenomena that were

previously out of the reach of computation are

becoming accessible.
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Table 1: Comparison of Traditional Methods vs. MLPs

Design of MLPs to catalytic applications is a special

issue to make MLPs distinctive in comparison to

other parts of molecular simulations. The

remarkable range of catalytic systems spans single-

atom catalysts supported on oxides to multi-

component organometallic and coordination

compounds and is active in solution (Unke et al.,

2024). Learning to represent robust MLPs involves

extensive coverage over configuration space that

includes reactant and product ground states and the

high-energy transition states as well as reactive

intermediates and distorted geometries that can

occur during a dynamic path. Moreover, catalytic

systems are sometimes at elevated temperature and

pressure, solvents or gas-phase reactants, and some

may cause a structure transition during the course of

reaction and all these changes should be well

described in the potential energy function.

The latest development of machine learning

architectures such as graph neural networks and

equivariant neural networks have vastly improved

the expressiveness and efficiency of MLPs to

applied catalysis (Batzner et al., 2022).

They can directly include physical symmetries,

many-body physics, and can learn complicated

chemistry relationships that form the critical

components of efficient picture of catalytic

behaviour. Through active learning strategies,

development of MLP has been more efficient

because configurations yielding maximum

information content are easily identified to reduce

the cost of computation of training data by ensuring

models give excellent results (Janet et al., 2023).

The successful application of MLPs to catalytic

reaction modeling has already demonstrated

remarkable achievements in several key areas,

including automated reaction pathway discovery,

large-scale molecular dynamics simulations of

catalyst-substrate interactions, and high-throughput

screening of catalyst candidates (Goldsmith et al.,

2023). These applications have provided new

insights into catalytic mechanisms, revealed the

importance of dynamic effects and environmental

factors, and accelerated the discovery of improved

catalytic materials. However, significant challenges

remain in developing truly universal MLPs that can

accurately describe diverse catalytic systems,

ensuring reliable extrapolation beyond training

domains, and integrating MLPs with experimental

workflows for autonomous catalyst discovery

Method Accuracy Computational
Cost

Transferability Typical Use Case

Classical Force
Fields

Low Very Low High Bulk MD, long
timescale sim.

DFT High High Low Small molecules,
surfaces

MLPs Near-
High

Low Moderate-High Catalytic reaction
modeling
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(Merchant et al., 2024). The continued advancement

of MLP methodologies, combined with the

exponential growth in computational resources and

quantum mechanical databases, promises to

revolutionize our approach to understanding and

designing catalytic systems for the next generation

of sustainable chemical technologies.

Figure 1: Comparison of computational methods for catalytic reactionmodeling

Schematic illustration comparing the accuracy-efficiency trade-offs between classical force fields, DFT calculations, and machine learning

potentials in catalytic systemmodeling.

2 Fundamentals of Machine Learning
Potentials
2.1 Key Concepts in ML-based Force Fields
Machine learning potentials rest on the idea of

learning mappings between atomic structures and

potential energy and forces by using regression

strategies perspective on fancied quantum

mechanical emcees (Deringer et al., 2024). The key

question is how to design representations capable of

simulating the fundamentals of the interatomic

interactions at the same time retaining the

computational efficiency and transferability

(Batzner et al., 2022). More modern MLPs use the

descriptors of atomic environment which describes

local chemical environment in a rotationally and

translationally invariant way.

The MLPs rely absolutely on the following (1) a

good selection of descriptors, which should capture

relevant information about the chemical system, (2)

the availability of an adequate and representative

training set across the space of configurations of

interest, and (3) machine learning architectures that

can learn the intricate nonlinear relations between

energy and atomic arrangement (Gastegger et al.,

2024). More progress has been made recently in the

development of more expressive architectures like

message-passing neural networks and equivariant

graph neural networks that may be better able to

model many-body interaction and symmetry

constraints.
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Figure 2: Workflow of MLPDevelopment

General workflow for developingmachine learning potentials, showing the iterative process from quantummechanical reference data
to trainedmodels.

2.2. Training Data Requirements for Catalytic

Systems

Here, one can select catalytic systems as an area

with additional problems in the development of

MLP of their own nature due to the high complexity

of describing both stable states, as well as reactive

intermediates. The training datasets should contain

sufficient coverage of catalyst-substrate interactions,

the transition and product states under the conditions

of interest (Friederich et al., 2023). Active learning

techniques have proved to be especially useful when

it comes to rapidly increasing the size of training

data by a process of continual discovery of settings

in which the existing model has large uncertainty.

The nature of the training data, especially

differentiation diversity, has huge implications on

MLP performance, especially extrapolation of

instructions to the new reaction environments or

catalyst formulations. Recently, it has been shown

that when the ab initio molecular dynamics

simulations are used, performance of MLP on static

snapshots can be enhanced by including dynamic

trajectories in both training and testing, resulting in

improved transferability (Smith et al., 2023).

Moreover, including the multi-level theory data, i.e.

coupled cluster calculation of critical points together

with DFT of large sampling can lead to more precise

results and lower computational costs.

2.3. Descriptors for Atomic Environments

The accuracy as well as the computational

effectiveness of MLPs are essentially defined by the

type of atomic environment descriptors used. The

historic descriptors like atom-centered symmetry

functions and smooth overlap of atomic positions

(SOAP) have been extremely effective but they

might be inadequate to be expressive to describe

complicated catalytic systems (Bartok et al., 2023).

In the modern methods, learnable representations

like SchNet, PhysNet, and MACE that can flexibly

acquire the vital chemical characteristics within the

training are extensively used.
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Graph neural networks have especially come to the

fore owing to their natural aptitude in modeling

molecular systems as graph-based systems with

atoms assigned the node role and a bond being the

edge (Gasteiger et al., 2023). Such architectures are

able to embed chemical knowledge in the form of

suitable message-passing schemes and their

application to modelling systems of complex

electronic structure has proved to be superior to

conventional approaches. More recent proposals on

equivariant neural networks have further enhanced

interpretability and efficiency of such approaches

through an explicit consideration of rotational

symmetries (Geiger & Smidt, 2022).

Table 2: Popular Descriptors for Atomic Environments

Descriptor Type Invariance Strengths Limitations

Atom-centered

symmetry

Handcrafted Rotational Simple,

interpretable

Limited

expressiveness

SOAP Kernel-based Rotational High fidelity Computationally

expensive

SchNet/MACE Learned

(GNN)

Full

equivariance

Highly

expressive,

scalable

Requires large

datasets

3 Development and Architecture of MLPs

3.1. Some of the popular ML Algorithms applied

in potential development

Recent developments of MLPs have been

dominated by use of neural network architectures,

with particular popularity enjoyed by feed-forward

networks, convolutional networks, and graph neural

networks as methods of application to catalytic

systems (Unke et al., 2024). One of the first

successful codes was the BehlerParrinello neural

network method, and continues to be prominent up

to a present, having become widely used on surface

catalysis problems. Newer architectures like ANI,

SchNet and MACE have proved more accurate and

transferable by using a more elaborate

representation of the many-body interactions and

their symmetry constraints.

Gaussian process regression constitutes the

alternative and has a natural measure of uncertainty,

which can be useful when applied to active learning

in developing a catalytic system (Jinnouchi et al.,

2024). Kernel techniques such as the Gaussian

approximation potential (GAP) methodology

provide very powerful interpolation features, and

have been effective on complicated catalytic

interfaces and surfaces. More recent different hybrid

methods involving a combination of several ML

methods have demonstrated potential in capturing
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local and long-range interaction within a catalytic

system.

3.2. Model Training and Validation strategies

The MLPs that require the robustness in catalytic

applications can be achieved by the use of effective

training strategies. The transfer learning method,

which hinges on supplying the already-trained

model with large databases, has also led to a marked

data efficiency and accuracy (Zaverkin & Kasting

2023). The challenging middle/high-level learning

problem, Δ-learning trains MLPs to learn to predict

corrections to lower-level methods, providing

computational convenience and eliminating loss of

accuracy in calculating reaction energetics.

The idea of active learning proved to be a very

effective one on catalytic systems, specifically when

the reference calculation process is extremely

expensive, thus efficient data gathering is paramount

(Janet et al., 2023). Through uncertainty-based

sampling approaches, configurations that maximise

information content can be found efficiently and,

consequently, more effective training sets. Another

form of robustness is the measurement of the

uncertainties of the predictions and the possible

failures of extrapolation, which is given by cross-

validation and ensemble techniques.

The validation of models of catalytic systems

demand close attention to both energetic quality and

transferability to different reaction conditions. New

benchmarking efforts have reported a set of best

practices regarding the assessment of the

performance of proposed MLP over diverse types of

catalytic reaction, especially the relevance of

benchmarking on held-out reaction pathways as well

as catalyst compositions (Chanussot et al., 2023).

The experimental validation and its comparison with

experimental measured activation energies, rate

constants, and selectivities have further confidence

in the MLP.

Figure 3: Accuracy vs Training Set Size

Relationship between training dataset size andmodel accuracy for different MLP architectures in catalytic systems.
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4 Application of MLPs in Catalytic

Reactions

4.1. Static Modeling:

Reaction Profiles and Reaction Paths Now that we

can calculate the energy of molecules, we need to

know how to calculate an energy profile and how to

decide what the reaction pathway must be.

MLPs have changed reaction energy profile

calculation through the possibility of finding an

effective method of evaluating potential energy

surfaces around quantum barrier with reasonable

rates and an accuracy to the quantum degree. Well-

trained MLPs enable the traditional optimization of

transition states and calculation of intrinsic reaction

coordinates to be run orders of magnitude faster and

permit rigorous sampling of reaction pathways (Li et

al., 2024). Successful predictions of activation

barriers, reaction energies and selectivity patterns of

complex multi-step catalytic processes have been

done recently through the applications.

New methods of reaction pathway discovery have

been developed based on the possibility of

calculating energies and forces in an expeditious

manner, such as automated transition state search

algorithms and enhanced sampling techniques.

MLPs have especially been good in locating

competing reaction pathways and determining

selectivity-determining steps in catalytic cycles. It is

possible to quantitatively predict reaction rates and

products using integration with the transition state

theory and microkinetic modeling (Goldsmith et al.,

2023).

Figure 4: Reaction Energy Profile Comparison (DFT vsMLP)

Comparison of reaction energy profiles calculated using DFT (reference) and machine learning potentials, demonstrating the

accuracy of MLP predictions for catalytic reaction pathways.

4.2. Dynamic Simulations: Molecular Dynamics

and Accelerated Sampling

The efficient computation of MLPs makes it

potentially possible to simulate catalytic systems

with unprecedented size in terms of molecular

dynamics to access dynamic effects, interactions

with the solvent, and temperature-induced effects
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(Singraber et al., 2024). Rare events like catalyst

deactivation, site blocking and surface

reconstruction, which are vital to the catalytic

performance, can be sampled in long-timescale

simulations. Other enhanced sampling techniques

like metadynamics and replica exchange can be

easily combined with MLPs to access energy

barriers and access the conformational space.

The recent applications have manifested the strength

of MLP-based molecular dynamics in approaching

the impact of solvent effects in homogeneous

catalysis, surface movements in heterogeneous

system and how promoters and poisons influence

the activity of a catalyst. Realistic modeling of

catalyst support effects, interface phenomena and

cooperative effects in multi-site catalysts have

become possible thanks to the ability to model

thousands of atoms in simulations. This combination

with modern sampling methods has demonstrated

new reaction mechanisms and clarified experimental

findings of peculiarities of selectivity patterns.
Figure 5: Molecular Dynamics Snapshot

Representative snapshot fromMLP-based molecular dynamics simulation of a catalytic system, showing atomic positions and

local environment around the active site.

4.3. Hybrid Approaches: Coupling MLPs with

QuantumMechanics (QM/ML)

Hybrid quantum mechanical (QM) and machine

learning (ML) strategies incorporate the precision of

quantum mechanical algorithms on reactive areas

together with the simplicity of MLPs exterior

scenery. Such methods are especially useful to

investigate catalytic reaction at complex interfaces

or in biological systems where quantum mechanical

full treatment would otherwise be prohibitively

costly. Current interest has been in smooth

transitions between QM and ML regions leaving as

little artifact in the interface as possible.

Various adaptive QM/ML schemes that seek to

dynamically alter the quantum mechanical coverage

with respect to a chemical bonding pattern or charge

distribution has exhibited exceptional promise in

application to catalysis. These methods are able to

automatically denote reactive centers, and adapt the

degree of theory, both reliable and efficient with

respect to complex catalytic transformations.
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5 Case Studies in Catalytic Reaction

Modeling

5.1. Single-AtomCatalysts and Surface Reactions

Another interesting and quite relevant category of

highly efficient catalytic systems are single-atom

catalysts (SACs) where MLPs have lent a new level

understanding in structure-activity relationships. The

dynamic nature of the active site in Pt single atoms

supported on a CeO2 catalyst has recently been

described using MLP studies, demonstrating a role

of support interactions to tune the activity of the

catalyst in CO oxidation (Park et al., 2023). The

capability to carry out large sampling by using

MLPs has given the opportunity to spot many

different active structures and their relative

contribution to the overall catalytic behavior.

MLPs have been used in surface reaction

experiments which have gained insightful

knowledge about elementary processes in significant

industrial reactions like methanol synthesis, Fischer-

Tropsch synthesis and ammonia production. The

role of surface flexibility and reconstruction in

determining product selectivity has recently been

illustrated with respect to Cu-based catalysts used to

reduce CO2 through MLPs. Much more systematic

studies of alloy composition effects, and of

dependencies on surface facets, have become

possible with MLPs in contrast with traditional DFT

methods which can prove too costly.

5.2. Homogeneous Catalysis With Transition
Metal Complexes
Developments in MLP have been of great assistance

in applying the practice of homogeneous catalysis

especially in the dynamics study of organometallic

complexes and the effects of ligands. MLPs were

also applied to the recently studied palladium-

catalyzed cross-coupling reactions, to probe the

conformational dynamics of phosphine ligands and

their effects on reaction barriers and on the

selectivity thereof. This has, in addition, allowed

direct incorporation of explicit solvent effects,

which has given new information regarding the

importance of coordination equilibria and ion

pairing in predicting catalytic behavior.

One of the most difficult cases where MLPs have

proved success is in asymmetric catalysis where the

models can be used to predict enantioselectivity

profiles. The investigation of chiral transition metal

complexes has revealed the extent to which some

small changes in conformation can result in large

differences in enantiomeric excess and has provided

guiding rules regarding how to create better catalysts

(Wodrich et al., 2023). Computational efficiency of

the MLPs has resulted in systematic screening of

ligand variation and its activity and selective effects.
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Table 3: Case Study Summary of Catalytic Applications

System Catalyst Type Reaction MLP

Used

Key Insight

CO Oxidation Pt/CeO2 (SAC) Surface reaction SchNet Dynamic site restructuring

observed

Pd Cross-

Coupling

Homogeneous C-C bond

formation

MACE Ligand conformation

affects selectivity

Cu CO2

Reduction

Heterogeneous CO2 →

Hydrocarbons

GAP Surface flexibility

influences products

5.3. High-Throughput Screening withMLPs

High-throughput screening techniques based on

MLP performance have appeared possible with the

parallelization capabilities of these models [17].

Recent usage showed productive demonstration of

regularly searching metal-support combinations to

define the promising catalyst compositions based on

a single atom (Ulissi et al., 2024). Screening

efficiency has also been complemented by

integration with active learning and Bayesian

optimization to direct the computational effort

towards those regions of the catalyst space where

the largest payback can be achieved.

Screenings using the potential of machine learning

have significantly been successful in the discovery

of new alloy compositions on a particular reaction.

The aim of studying catalysts of oxygen reduction

reactions is the discovery of trends in performance

and design principles previously unknown to

researchers and this has been accomplished via

binary and ternary alloy composition screening. A

combination of MLPs and uncertainty quantification

allows to identify candidates that appear promising

and point out to possible extrapolation failures with

a reasonable amount of reliability.
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Chart 2: High-Throughput Screening Results

Results from high-throughput screening of catalyst candidates using machine learning potentials, showing activity trends across

different compositions

6 Challenges andOpportunities

6.1. Data Efficiency and the Limits of

Extrapolation

Since these have been improved vastly in recent

times, MLPs, however, still struggle with issues of

efficiency in what data they use and that cannot be

extrapolated outside their training worlds

(Westermayr & Marquetand, 2024). Catalytic

systems can contain uncommon configurations like

transition states, and severely distorted intermediates

that can be under-represented in training datasets.

Current works have explored the creation of more

effective sampling techniques and uncertainty

measures in order to determine when MLPs can be

expounding perilously.

Transfer learning and few-shot learning methods

provide good means to increase data efficiency in

catalytic applications. Recently, it was shown that

models pre-trained on a variety of chemical data

may also be fine-tuned on few representatives of a

target catalytic system. Nevertheless, transferability

to other catalyst compositions, reaction conditions

and substrates is an open topic of investigation.

6.2. Interpretability and uncertainty-

quantification

Many ML models lead to black-box maps, which

are problematic in relation to mechanistic

understanding and the generation of scientific

insight. Explainable AI and interpretable ML have

recently developed to handle such issues by feature

importance analysis, attention models and

constraints on physics. In the quest of creating

catalytic applications, it is considered an important

failure to develop MLPs capable of giving chemical

intuition and mechanistic understanding.

Catalytic applications especially require the

determination of uncertainty to the fullest extent

possible because failures in extrapolation may result

in the erroneous assignment of mechanistic details or

design choices of catalysts (Tran & Ulissi, 2024).

The three alternative models to quantify prediction

uncertainties are ensemble approaches, Bayesian
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neural nets, and Gaussian process. Nonetheless,

being able to create computationally effective

uncertainty quantification methods that can be

applied in the screening of large scale catalytic

systems has remained an interesting research topic.

6.3. Automated Reaction Discovery Integration
with
Automated reaction discovery platforms coupled

with MLPs present an opportunity to revolutionize

effort to speed up the process of developing catalysts

(Coley et al., 2024). Automated synthesis and

characterization systems have advanced in the past

couple of years (Barrett et al., 2018; Nai et al., 2020;

Scherrer et al., 2019), and these can be used to

provide a complete closed-loop system by

complementing MLP-based computational

screening. The machine learning strategies used in

making prediction in reaction and retrosynthesis can

be augmented using MLPs that give good energetic

and kinetic data.

Autonomous experimentation facilities, which

integrate robotic synthesis, high throughput

characterization and MLP-driven design, are coming

on line. These systems can also refine both

experiment conditions and computing models

iterationally, and rapid discovery of new catalytic

systems can be achieved. Nonetheless, the

successful integration of the computational and

experimental parts continues to be a technically

challenging, subtle issue, which leads one to think

extensively on the issue of error propagation and the

reliability of the model.

7 Theories and Future Outlooks

On to Catalytic Universal MLPs

A significant target of the field is maturation of

universal MLPs that can faithfully characterize a

variety of catalytic systems. Recent advances in

foundation models that have been trained on large

quantum mechanical databases provide hope of

creating a set of broadly applicable potentials

(Merchant et al., 2024). Such models may one day

greatly simplify the process of developing new

catalytic chemistries by removing the system-

specific training required.

Nevertheless, the notion of being truly universal is a

logistical ordeal where there is a broad spectrum of

both chemical bonding differentiations, the state of

electronic structures and environmental

circumstances in catalytic set-ups. Recent studies

have been concerned on designing hierarchical

methods where the models are universal and based

while becoming specific for the system. Another

possible way to enhance transferability relates to the

integration of physics-based constraints and

chemical knowledge in universal models.

8 Place of Foundation Models and

Generative Architectures

Generative AI method and large language models

are starting to impact MLP by application of pre-

training and architecture advancement. Transformer

structures have demonstrated potential to learn more

complicated chemical interactions and may allow

the more sophisticated treatment of long-range

interactions in catalytic systems. The generative

models to design molecules and the catalysts may be

improved by incorporation of MLPs that are precise

and that feed the energy back.
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This poses opportune and demanding challenges to

scaling foundation models to chemistry. Although

more complex relationships involving chemistry

could be modeled in another more-parameter model,

the requirements might demand excessive

computational complexity and data demands that are

prohibitive in many problems. The design of

efficient architectures with low expressivity / low-

computational practicality balance is the subject of

ongoing research.

Constructing Open-source Datasets and Benchmarks

The advancement of both comprehensive, open-

source datasets and standardised benchmarks has

been imperative to the further development of MLP

aimed at catalytic applications. Pushing forward

efforts like the Open Catalyst Project have started to

introduce large scale data sets on which MLPs can

be trained and evaluated on catalytic systems.

Nevertheless, it is desirable that these developments

be extended to include more breadth of catalytic

systems and reaction conditions.

Consistent compared to benchmarking mechanisms

that allow comparing the various MLP methods

fairly are needed to fuel developments in the area.

Recent attempts have been directed towards coming

up with benchmark suites to test the different aspects

of MLP performance such as accuracy,

transferability and computational efficiency. The

collaboration of the community in framing the best

practices in abiding by dataset curation, monitoring

the models, and measuring the performance will be

significant in stepping up the process.
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