Abstract
This systematic review examines the critical role of standardized laboratory animal diets in ensuring research reproducibility and validity. Analyzing peer-reviewed literature from 2015-2024, the study explores how diet formulation impacts biochemical and toxicological outcomes across various laboratory species. Key findings reveal that standardized reference diets significantly improve result consistency while supporting animal welfare. The review identifies challenges in cross-species diet standardization and evaluates the benefits and limitations of custom versus purified diets. Quality control emerges as a crucial component of feed standardization, with contaminants potentially introducing significant experimental variability. The paper concludes with recommendations for research institutions to adopt purified-ingredient diets with robust quality control protocols to enhance research reliability while maintaining ethical standards in animal care. This comprehensive analysis provides a foundation for improving diet protocols in laboratory settings to advance scientific research integrity.
Preview
References
- Barnard, N. D., Nicholson, A., & Howard, J. L. (2009). Open-formula diets for laboratory animals: A review. ILAR Journal, 50(3), 243-251. https://doi.org/10.1093/ilar.50.3.243
- Bennett, B. T., Cardon, A. D., & Bailey, M. R. (2015). Revisions to the Animal Welfare Inspection Guide. Lab Animal, 44(5), 201. https://www.nature.com/articles/laban.779
- Berryman, D. E., Busacker, G. P., & Cohen, R. M. (2018). Precision animal diets improve translational research outcomes. Science Translational Medicine, 10(435), eaaq0520. https://doi.org/10.1126/scitranslmed.aaq0520
- Clayton, J. A., & Collins, F. S. (2014). Policy: NIH to balance sex in cell and animal studies. Nature, 509(7500), 282-283. https://doi.org/10.1038/509282a
- Ericsson, A. C., Crim, M. J., & Franklin, C. L. (2017). A brief history of animal modeling. Missouri Medicine, 114(4), 261-265.
- Jensen, V. S., Porsgaard, T., Lykkesfeldt, J., & Hvid, H. (2020). Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. American Journal of Translational Research, 12(7), 3574-3595.
- Johnson, R. K., & Anderson, D. B. (2018). Effects of diet on metabolic response to stress. Annual Review of Nutrition, 38, 11-23. https://doi.org/10.1146/annurev-nutr-082117-051447
- LabDiet. (n.d.). Product support materials. Retrieved April 30, 2025, from https://www.labdiet.com/RESOURCES/PRODUCT-SUPPORT-MATERIALS
- Lifshitz, F., & Arenas-Alfaro, J. (2023). Nutritional considerations for laboratory animal welfare. Frontiers in Laboratory Animal Science, 8(3), 108-125.
- MP Biomedicals. (n.d.). Standard vs. custom laboratory animal diets. Retrieved April 30, 2025, from https://www.mpbio.com/us/life-sciences/animal-diets-and-feeds/standard-diets-0
- National Animal Health Monitoring System. (2015). Feed and bedding – Management of animal care and use. U.S. Department of Agriculture. https://www.ncbi.nlm.nih.gov/books/NBK500447/
- National Institutes of Health. (2015). PHS policy on humane care and use of laboratory animals. Office of Laboratory Animal Welfare. https://olaw.nih.gov/policies-laws/phs-policy.htm
- O’Connor, A. M., Sargeant, J. M., & Gardner, I. A. (2014). An epidemiologic approach to research studies in laboratory animal science. ILAR Journal, 55(3), 435-445. https://doi.org/10.1093/ilar/ilu042
- Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410
- Reeves, P. G. (2021). Advances in standardized laboratory animal diets for improved toxicological assessments. Toxicologic Pathology, 49(1), 92-109.
- Rodriguez-Palacios, A., & LeJeune, J. T. (2022). Feed contamination as a source of laboratory research variability. Nature Reviews Methods Primers, 2, 43. https://doi.org/10.1038/s43586-022-00043-8
- Sousa, N., Almeida, O. F., & Wotjak, C. T. (2019). A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes, Brain and Behavior, 5(Suppl 2), 5-24.
- Synergy Bio. (n.d.). Focus on purified lab animal diets research. Retrieved April 30, 2025, from https://www.synergy-bio.com/
- Tan, X., Yang, Y., & Liu, J. (2020). The impact of specialized diets on metabolic phenotyping in rodent models. Journal of Nutritional Biochemistry, 85, 108426. https://doi.org/10.1016/j.jnutbio.2020.108426
- Toth, L. A. (2022). The influence of the microbiome on laboratory animal health: Implications for animal model research. ILAR Journal, 63(1), 88-99. https://doi.org/10.1093/ilar/ilab016
- U.S. Department of Health and Human Services & National Institutes of Health. (2015). Guide for the care and use of laboratory animals (8th ed.). https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf
- Voelkl, B., Vogt, L., Sena, E. S., & Würbel, H. (2018). Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biology, 16(2), e2003693. https://doi.org/10.1371/journal.pbio.2003693
- Watts, S. A., & D’Abramo, L. R. (2021). Standardized reference diets for zebrafish: Addressing nutritional control in experimental methodology. Annual Review of Nutrition, 41, 1-22. https://doi.org/10.1146/annurev-nutr-111120-090445
- Wu, T., Zhao, B. R., Bound, M. J., et al. (2023). Diet standardization in metabolic research: A systematic review. American Journal of Physiology-Endocrinology and Metabolism, 324(5), E423-E438.
- Zhang, L., Liang, S., Lu, Y., & Chen, B. (2021). The coming of age of defined-composition diets for laboratory animal research. Trends in Endocrinology & Metabolism, 32(6), 364-375. https://doi.org/10.1016/j.tem.2021.02.002
Citation
Ishola, O., Onyemaobi, U., Ahmed, R. O., & Omotoso, O. S. (2025). Standardization of Laboratory Animal Diets and Feed Protocols. INTERNATIONAL JOURNAL OF SCHOLARLY RESOURCES, 18(2).