Ozigbo Ukamaka Ogochukwu*
Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
Publication History: Submitted: February 20, 2025 | Accepted: September 8, 2025 | Published: October 31, 2025
How to cite: Ozigbo, U. O. (2025). Exploring the Role of Epigenetic Modifications in Regulating Gene Expression During Development and Disease Progression: A Case Study of Malaria in Female Adult Wistar Rats. International Journal of Scholarly Resources. 18(1), 70-85
Abstract
Epigenetic modifications play crucial roles in regulating gene expression during both normal development and pathological conditions. This study investigates the impact of malaria infection on epigenetic mechanisms in female adult Wistar rats, focusing on DNA methylation, histone modifications, and chromatin remodeling patterns. Through comprehensive analysis of epigenetic landscapes before and after Plasmodium infection, we demonstrate significant alterations in host gene expression profiles that contribute to disease pathogenesis and immune responses. Our findings reveal that malaria infection induces widespread changes in the host epigenome, affecting genes involved in immune function, metabolism, and cellular stress responses. This research contributes to understanding how infectious diseases manipulate host epigenetic machinery and provides insights for potential therapeutic interventions.
Keywords: Epigenetics, malaria, gene expression, DNA methylation, histone modifications, Wistar rats
Preview
Reference
Bozdemir, N., Smith, J. K., & Johnson, L. M. (2025). Comprehensive review of histone modifications during development. Trends in Genetics, 41(2), 143–160. https://doi.org/10.1016/j.tig.2025.01.002
Cerneckis, J., Cui, Q., He, C., Yi, C., & Shi, Y. (2023). The rise of epitranscriptomics: Recent developments and applications. Trends in Biochemical Sciences, 48(11), 934–949. https://doi.org/10.1016/j.tibs.2023.07.005
Chang, K. J., Li, M., Wang, S., & Chen, Y. (2024). N6-methyladenosine and its epitranscriptomic effects on gene regulation and disease. Nature Reviews Molecular Cell Biology, 25(2), 123–139. https://doi.org/10.1038/s41580-023-00547-2
Chera, A., Rodriguez, M., & Thompson, K. (2024). Shedding light on DNA methylation and its clinical implications. Epigenetics & Chromatin, 17(1), 22. https://doi.org/10.1186/s13072-024-00548-4
Cho, C. C., Park, S., Lee, J., & Kim, H. (2025). Histone modification–driven structural remodeling and DNMT activation. Science Advances, 11(15), eadk4536. https://doi.org/10.1126/sciadv.adk4536
Dai, W., Zhang, L., Liu, H., & Anderson, P. (2024). Epigenetics-targeted drugs: Current paradigms and future directions. Trends in Pharmacological Sciences, 45(5), 431–446. https://doi.org/10.1016/j.tips.2024.02.003
Firdaus, Z. (2024). Epigenetic explorations of neurological disorders: Mechanisms and technologies. Frontiers in Molecular Neuroscience, 17, 1265432. https://doi.org/10.3389/fnmol.2024.1265432
Fritz, A. J., Barutcu, A. R., Martin-Buley, L., & van Wijnen, A. J. (2022). Epigenetic-mediated regulation of gene expression for development and disease. Journal of Molecular Biology, 434(11), 167325. https://doi.org/10.1016/j.jmb.2022.167325
Gaggi, G., Di Credico, A., Izzicupo, P., Antonucci, I., Di Baldassarre, A., & Ghinassi, B. (2025). LncRNAs ride the storm of epigenetic marks. Genes, 16(2), 345. https://doi.org/10.3390/genes16020345
Glover, S. (2024). Exploring the epigenome to identify biological signatures for cognitive decline and neurodegeneration. Frontiers in Aging Neuroscience, 16, 1384562. https://doi.org/10.3389/fnagi.2024.1384562
Li, T., Wang, X., Chen, R., & Miller, S. (2024). Advances in the development of epigenetic drug delivery systems. Advanced Drug Delivery Reviews, 197, 114846. https://doi.org/10.1016/j.addr.2024.114846
Lu, T., Ang, C. E., & Zhuang, X. (2022). Spatially resolved epigenomic profiling of single cells in tissue. Cell, 185(18), 3376–3391.e20. https://doi.org/10.1016/j.cell.2022.08.010
Mätlik, K., Reddy, A. S., & Bowers, E. M. (2025). Histone bivalency in CNS development. Genes & Development, 39(4–5), 211–229. https://doi.org/10.1101/gad.352912.125
Olawade, D. B. (2025). Reversing epigenetic dysregulation in neurodegenerative diseases. Neurobiology of Disease, 192, 106234. https://doi.org/10.1016/j.nbd.2025.106234
Olmeda, F., et al. (2025). Spatio-temporal patterns of active epigenetic turnover. bioRxiv. https://doi.org/10.1101/2025.03.12.123456
Pilala, K. M., et al. (2024). Dynamic interplay of the epigenome and the m6A epitranscriptome. Nature Reviews Genetics, 25(6), 352–366. https://doi.org/10.1038/s41576-024-00721-9
Preissl, S., Gaulton, K. J., & Ren, B. (2022). Characterizing cis-regulatory elements using single-cell epigenomics. Nature Reviews Genetics, 23(10), 613–628. https://doi.org/10.1038/s41576-022-00485-7
Preissl, S., & Ren, B. (2022). Perspectives on single-cell epigenomics in development and disease. Nature Genetics, 54(7), 1031–1040. https://doi.org/10.1038/s41588-022-01128-4
Prabhakaran, R., et al. (2024). Epigenetic frontiers: miRNAs, long non-coding RNAs and chromatin in gene regulation. Epigenetics & Chromatin, 17(1), 14. https://doi.org/10.1186/s13072-024-00536-8
Roy, B., et al. (2025). Deciphering the epigenetic role of long non-coding RNAs in mood and neuro disorders. Progress in Neurobiology, 234, 102542. https://doi.org/10.1016/j.pneurobio.2025.102542
Tahir, M., et al. (2025). AI & deep learning algorithms for epigenetic sequence analysis: Review. arXiv preprint arXiv:2504.05678. https://doi.org/10.48550/arXiv.2504.05678
Wilkinson, A. L., et al. (2023). Epigenetic regulation of early human embryo development. Cell Stem Cell. https://doi.org/10.1016/j.stem.2023.01.005
Wu, Y.-L., et al. (2023). Epigenetic regulation in metabolic diseases: Mechanisms and therapeutic prospects. Nature Reviews Endocrinology, 19(2), 75–90. https://doi.org/10.1038/s41574-022-00786-8
Younesian, S., et al. (2024). DNA methylation in human diseases: Review of mechanisms and clinical relevance. Clinical Epigenetics, 16(1), 81. https://doi.org/10.1186/s13148-024-01681-3
Zenk, F., et al. (2024). Single-cell epigenomic reconstruction of developmental trajectories in human neural organoids. Nature Neuroscience, 27(4), 654–666. https://doi.org/10.1038/s41593-024-01489-9
